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1. Kinematics of deformable bodies 
Our aim is first to show that the most general motion of a small element of a deformable body can 
be represented by as the sum of a translation, a rotation and an extension or contraction in three 
mutual orthogonal directions. 
We shall therefore consider an infinitesimal displacement ),,( dwdvdusd 


of an element, where 

the element has the position (x, y, z) in a Cartesian coordinate system.  
We then have the three differentials 
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We ignore the translation, since it is the same for all points, and its differential is zero.  
Then we rewrite these expressions, so that each new term will represent a rotation or an 
extension/contraction. We do this by an addition and subtraction of some of the partial derivatives. 
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You may convince yourself that this expression is actually equal to 
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Similarly for the dv and dw. 
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The vector ),,( dzdvdusd 


 can therefore be split up into 2 vectors 21 sdsdsd


 , indicated by the 

square parenthesis.  
Regarding 1sd


, then we remind you of the formula for the rotation operator. If ),,( wvus 


 then 
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If we introduce the vector:  
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Then we can show (although it is a bit tricky), that the rotational part 1sd


 can be written as:  
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Where the cross product of two vectors ),,( zyx aaaa 


 and ),,( zyx bbbb 


 is given by: 

 

  ),,( yxxyxzzxzyyz bababababababa 


 

In our case:   
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which we evaluate to get: 
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This still not entirely equal to the two terms in 1sd


, (1.2) – (1.4) but if we change sign in the 

second terms in each coordinate, (by converting the minus sign outside the parenthesis to a plus 
sign), we find: (1.9) 
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This we compare to the first bracket in du, dv, dw, denoted with an index 1. 
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So we have the equation rdsd


1 . We have by definition the two equations: 
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Where v


 is the velocity, and 


is the vortex vector, the significance of which was first recognized 
by Helmholtz. If we for simplicity write ),,( wvu   for (du/dt, dv/dt, dw/dt) , then the coordinates to 


 

can be written: 
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If we remove 1sd


 (the rotation) from (1.2) – (1.4), we are left with the vector 2sd


 =(du2,dv2,dw2),  

having the terms shown below. Since these equations contain no translation or rotation of the 
element, they must represent the deformation, that is, the compression and/or distortion of the 
element. The coordinates of 2sd
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These nine coefficients to dx, dy, dz form a tensor. 
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orthogonal directions. The other elements represent distortions of the xy, yz or xz plane of the 
material element. 
For the tensor elements, we write them as ji , where i, j = x, y, z, so that 
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  is a 3x3 tensor called the strain-tensor, since they represent the compression and the distortions 
per unit length, due to some external force. Also they can be used to calculate the frequencies in 
the x, y, z directions when the element is acted on by a force, and then released, making free 
oscillations. 
We shall then analyze the geometrical interpretation of the elements of the tensor  .  
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We shall consider a x y laminar of a rectangular box, which is so small that the deformations over 
the box are the same. We shall then look at a rectangle which is the x y side of the box, having 
sides banda  , both are considered infinitesimal small. See the figure below. 
The laminar is 0132, and it is distorted into a parallelogram 0'1'3'2'. 
We consider thus an infinitesimal distortion ),,( wvu  .  
 
Figure (1.17) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

v is the amount that the rectangle is stretched along the y - axis, and u is the amount that the 
rectangle is stretched along the x – axis. The figure is two dimensional, (in the x – y plane), 
although it might look three dimensional from the figure, but both the rectangle and the 
parallelogram are in the same plane 
From the figure one can see that the angle 1  can be calculated from v the stretch in y direction 
divided by the length of stretched 0'1' line, having the length ua  .  
Notice that we consider au  .  
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It is of course possible to give a similar interpretation of the other components of the tensor  
However the physical significance of the tensor elements is not so transparent. 
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We may write a linear form from the expression for 2sd


 by replacing 2sd
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 with 2s


, (du2 ,dv2,dw2) 
with (u2 ,v2,w2) and (dx,dy,dz) with (x,y,z) = r
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We then establish the bilinear form:  
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This may be an ellipsoid or a hyperboloid. We know, however, it has three principal axes, 

)( 3,2,1 xxx and by a coordinate transformation to these axes, it can be brought to the form: 
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The coefficients 321 ,,  are called the principal extensions or contractions. 

 
A small relative compression of the volume can in the system of the principal axes be written as: 
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If the relative compression is denoted  , then we have already foreseen that 
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represents the cubic compression or dilatation 

2. Dynamics of deformable bodies 
We shall now turn to the concept of stress, which is defined as the force per unit area. There must 
be as many components of stress that there are of strain, since the two physical quantities are 
related by "Hookes law". For a small cube, the stresses on opposite sides are the same. There are 
three stresses on each of the three sides.  
The stresses acting in the y –z plane are denoted yxxyxx   and similar for the two other sides. 

Since the stresses are components of a vector, they will form a tensor. 
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The meaning and directions of the stresses are shown in the figure below. 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
The small volume has the sides zyx  ,, . 
We must verify that the stress tensor is a symmetric tensor, so we setup an expression for the 
moments around the z-axis caused by the stresses yxxy  ,  
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However in equilibrium we must have yxxy MM   and therefore also  yxxy    

 

2.1 Strain-stress relations. Elastic constants 
In the following we shall assume that the forces on the material in question are so small that we 
can apply a linear relation (Hookes law) between stress and strain. We further assume (trivially) 
that the elastic body is isotropic, such that its physical properties are the same in all directions. 
We shall then analyze the material with the principal axes of the stress ellipsoid.  
A volume element cut with sides parallel to the three principal axes of the stress ellipsoid makes a 
convenient starting point of our analysis.  
The three pair of faces are subjected to the three principal stresses 321 ,,  , while in the 

principal axes system there are no shear stresses, so jiforji  0 . 

Then there are no angular changes and for that reason the principal axes of the strain tensor must 
coincide with the principal axes of the stress tensor. 
Due to the assumed linearity of strain and stress, we can write  
 
(2.3)  3211  cba   
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Since no axis is preferred, then two similar relations can be obtained simply by rotating the 
indices. 
 
 1322  cba   2133  cba   

 
For symmetry reasons (in an isotropic body): b must be equal to c. It is convenient to rewrite the 
expressions by adding and subtracting 1b . 
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With a change in notation  
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Since there is symmetry in the three principal axes, we have two similar expressions.  
And generally: 
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To find the strain stress relation in the general case, we must use the transformation T matrix from 
the principal axes system to an arbitrary system. Since T is a transformation from two orthogonal 
systems, it is a unitary and symmetric matrix, which means: 
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We shall use (x,y,z) synonymous with (1,2,3). The rule for transformation of a tensor is. e.g. 
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The transformation matrix is the same for the strain and the stresses, since the principal axes are 
the same for the strain and the stresses. 
Using the principal axes:  ijiij    and ijiij    

For the transformed strain and stresses from the principal system to an arbitrary system, we can put 
k = l since ijiij   , using the symmetry of the two tensors, such that.  
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kkkxx    

 (2.10) 3
2

2
2

1
2

2222 232221
'  aaaaa

k
kkkyy    

 3
2

2
2

1
2

3333 333231
'  aaaaa

k
kkkzz    

And correspondingly: 
   
(2.11) 3

2
2

2
1

2
1111 131211

'  aaaaa
k

kkkxx    

(2.12) 
k

kkjkiji aa  '  

Using:  3,2,1;)(2 321  iii  , we find for i = x = 1,when inserting in (2.12). 

 
(2.11) ))(2(' 3211111  

k
kkkxx aa   

Inserting the expression 3
2

2
2

1
2

11 131211
 aaaaa

k
kkkxx  , and zzyyxx   321  

and noticing that ikjk
j

ijaa 


3

1

 we find: 

(2.12)  )(2 zzyyxxxxxx    

  )(2 zzyyxxyyyy    

  )(2 zzyyxxzzzz    

 
For ij where i and j are different, we take the same starting point as before. Inserting the 

expression: )(2 321   kk in 
k

kkjkiji aa  '  gives: 

(2.12) ))(2(' 321 
k

kkjkiji aa    

   
k k

kjkikkjkiji aaaa )(2' 321   

And replacing ji
k

kkjki aa '    we get: 

(2.13)  xyxyijji or  2'2'    

In condensed writing: 
  
(2.14)   ikikik  '2'  

 
The inverse relations are found by summing the first three relations: 
 
  )32())(32(  zzyyxxzzyyxx  
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)32(  


  

 
This permits one to express the first scalar  by the first scalar  . On introducing   in (2.14) 

 ikikik  '2'  we have: 

  
)32(

'2'






 ikikik   

and solving for ik'  

(2.15) )
)32(

'(
2

1
' 








 ikikik  and since zyxkji ,,,,   

(2.16) 


 ''2)
)32(

(
2

1 





 xxxxxx  

 


 ''2)
)32(

(
2

1 





 yyyyyy  

 


 ''2)
)32(

(
2

1 





 zzzzzz  

 
or in condensed writing: 
 
(2.17)   ijijij  ''2  

 
These are the general stress-strain relations expressed by the constants  and , which is known 
as Lamé's moduli. 
 

(2.18)  









322

1
',

2

1
'2


  

 
The quantities  and shall now be expressed by two other constants that refer to the simplest 
type of compression or tension experiment. 
A vertical prismatic bar with cross section A, the upper end which is rigidly fixed, is subjected to a 
load F, which acts at the lower end. Let the load be uniformly distributed over the cross section A. 
The tension across any section is  
  

(2.19)  
A

F
   

 
The stress is the principal stress, since there are no side forces, and therefore no shear stresses. 
The associated principal extensions (strains)   equals ll / where l is the length of the bar, and l  
Is the displacement of the end cross section. It turns out that the ratio between the stress and the 
extension is a material constant, that is, independent of F, A and l as long as the loading is not 
excessive. The ratio is denoted by E and is known as Young's module. 
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(2.20)  



E  

E has the same dimension [force/area] as the stress  , since 
l

l
  is dimensionless. 

Tension, that is, elongation or contracting is, however, not the only response to a force acting on a 
bar. Actually a tension or contraction is always accompanied by a contraction/extension of the 
cross section of the bar. It is the same contraction, which on a much larger scale when a rubber 
band is stretched, and we take it as a natural model of a material as a respond to the loading.  
If we denote the contraction, which is the same for all fibre of a homogenous material by   , in 
this case a positive number, we define generally. 
  

 


    or using 




E     to give 

(2.21)    
E

  

 
The quantity   is also a constant of the material. It is called Poisson's ratio of transverse 
contraction or longitudinal extension. 
Poisson did not only introduce this number, but actually experimentally determined its ratio to 
0.25. Attempts to improve this value, has revealed other values, but up till now there exits no 
universal theoretical value.  
For engineering applications the general accepted value for iron is 3.0/1  m . 
When the bar is under compression instead of tension, the longitudinal contraction is accompanied 
by transverse dilatation, But E and   remains the same in spite of the change of sign that have 
occurred, provided of course that the load is in the region where Hooke's law apply. 
We now apply, what we have learned in the simple tension example to analyze the general state of 
stress, which we consider as the superposition of three unidirectional stresses in the principal 
directions, where the effect of each stress is the same as in the simple bar experiment. 
Because of the linearity of the elastic stress relations we may superimpose the stresses as well as 
the associated strains. However the extension along the principal axis (1) is not entirely determined 
by the stress 1 , but in addition by the stresses in the two other principal directions. (2) and (3). 

Applying this, we obtain from (2.20) 



E  and (2.21) 
E

  

 

(2.22) )(
1

)( 321132
1

1  



EEEE

 or in general 

 

(2.23) )(
1

321  



EE ii  

 
Summing the relation for i = 1,2,3 we find: 
  

(2.24) )(
21

321321  



E

      or        



E

21
 

 
And by substituting  in  (2.23), we find the result: 
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(2.25)  





 













211 ii

E
 

  
The fundamental equation, which we wish to find, is found from a comparison between (2.25) and 
(2.6) 3,2,1;)(2 321  iii  . This leads to: 

 

(2.26)  






1

2
E

 and   
)21)(1( 





E

, 

 
Which expresses Lamé's parameters by E and  , whose physical significance is, however, not 
immediate. 
Let us now take up another particular simple case of a stress field, namely equal stresses in all 
directions, as it is realized inside a cylinder with a hydraulic press. 
The strain an stress ellipsoids are then both spheres, so 
 
 p 321   p3321    ||3

1
321    

 

Equation (2.25) 





 













211 ii

E
 gives in this case: 

 

(2.27)  
)21(3 




E
p   

 
We define now the modulus of compression K by the equation. 
 

(2.28)  
||


p

K , 

 
And from (2.27) and (2,28), we infer: 

Cre´cewase 

(2.29)  
213

1




E
K  

 
The incompressible case 0 corresponds to K  or 2

1 . This value represents the upper 

limit for the possible values of Poisson ratio. 
For 2

1 the behaviour of the body becomes instable. The response to an external pressure will be 

an increase of the volume instead of a decrease.  
We shall then look at another particular stress phenomenon, namely a pure shear stress. 
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If we take a rectangular parallelepiped, where the z – surface(in the plane of the paper) is free from 
stress, while the shearing stress   yxxy  acts on the x and y-surface. 

We assume that the stresses are independent of z, and they can simply be represented by drawing a 
cross perpendicular to the z-axis as in fig 12a. The deformation due to the stresses changes the 
rectangular into a rhomboid, one pair of right angles being diminished and, the other pair being 
increased by angle  . The stress quadric, is like the strain quadric in pure shear, a cylinder parallel 
to the z –axis, the basis of which is an equilateral hyperbola. The principal axes form an angle of 
450 with the x and y-axis, and the two principal stresses are numerically equal with opposite 
sign. 12   , whereas 3 is zero. This is a consequence of the invariance of the first scalar of the 

stress tensor  for the element considered originally (Fig. 12a) 0 zzyyxx  by hypothesis, 

hence an element out parallel to the principal axes must take tension and compression in equal 
amounts to make 021   . 
The state of pure stress serves to define the shear modulus, which we provisionally denote by G, a 
notation which is generally accepted in engineering practice. So we set 
 

(2.30)   



G  

Where is the shear stress and  is the angular change. 
To determine G, that is, to express it by the elastic constants, already introduced, we return to the 
general relation xyxy  2 , which reads in our present notation   . Thus we have  

 

(2.31)  
)1(2 





E

G  

 
The shear modulus G is thus identical with Lamé's modulus  , so the notation G is no longer 
needed. 

We can then determine the stress from the equilibrium condition 0 FDiv


 . 
However the three equilibrium conditions are insufficient for a complete determination of the six  
stress components xy . If we express the stresses xy  by the tensions xy  and write for the xy , the 

original definitions in terms of the displacements, we obtain three equations, which is sufficient to 
determine the displacement vector. Cartesian coordinates are used. The x-component of the vector 
divergence transforms, according to the stress-strain relation into. 
 

 
xzyx

Div zxyxxx
x 























  2  

 
Which becomes when we reinstall the expressions for the displacements (1.15). 
 

 
xzx

w

z

u

yx

v

y

u

x

u
Divx 
































 
2

2

22

2

2

2

2

2  

 
This can further be rearranged into 
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x

uDivx 


 )(2   

By rotating the letters using the equilibrium condition, 0



















x
zxyxxx F

zyx


, we finally 

have.  

  0)(2 



 xF
x

u   

(2.32)  0)(2 



 yF
y

v   

  0)(2 



 zF
z

w   

 
These three fundamental equations determine the displacement vector (u, v, w) everywhere in the 
interior of a body, if the behaviour along the body surface is determined by appropriate boundary 
conditions. 
However, there is no general solution to these equation, and generally they cannot be solved, 
without resorting to symmetry of the problem and rewriting the equations in curve-linear  
coordinates. See e.g. http://olewitthansen.dk/Mathematics/Partial_differential_equations.pdf  
 
 
Reference: Arnold Sommerfeld: Mechanics of deformable bodies 
 
 
 


